ML4H Auditing: From Paper to Practice

Luis Oala, Jana Fehr, Luca Gilli, Pradeep Balachandaran, Alixandro Werneck Leite, Saul Calderon-Ramirez, Danny Xie Li, Gabriel Nobis, Erick Alejandro Muñoz Alvarado, Giovanna Jaramillo-Gutierrez, Christian Matek, Arun Shroff, Ferath Kherif, Bruno Sanguinetti, Thomas Wiegand

Spotlight Presentation Machine Learning for Health (ML4H) Workshop Conference on Neural Information Processing Systems December 11, 2020

Collaborators

Luis

Jana

Luca

Pradeep

Alixandro

Saul

Danny

Gabriel

Erick

Giovanna

Christian

Fraunhofer

нн

Arun

Ferath

Bruno

Thomas

Balancing act in ML4H

Exploratory excitement and rigorous assessment of efficacy and safety

A smorgasbord of guidelines

STARD-AI [Sou+20], CONSORT-AI [Liu+20], SPIRIT-AI [Liu+20], Focus Group on Artificial Intelligence for Health (FG-AI4H) [Wie+19], FDA [US-19], International Medical Device Regulators Forum (IMDRF) [IMD19], implications [He+19], data [Geb+18], model development [Mit+19]; [Sen+20], ...

Paper-to-practice gap

Abstract guidelines are available but they are not being applied routinely \longrightarrow lack of feedback and harmonization, process vacuum

	0 Transmit	O Understand	🖲 Audit	O Report
ITU/WHO FG-Al4H Reference Documents	Training and Test Data Specification (DEL 5.4)	Data Annotation Specification (DEL 5.3)	Ethics Consideration (DEL 1)	Reporting Template (J-048)
			Regulatory	
	Data Requirements	Data Acquisition	Considerations	
	(DEL 5.1)	(DEL 5.2)	(DEL 2.2)	
	Data Handling	Topic Description	Clinical Evaluation	
	(DEL 5.5)	Document (TDD) (DEL 10.x)	(DEL 7.4)	
	Data Sharing		Assessment Methods	
	(DEL 5.6)	Model Ouestionnaire	Reference	
		(J-038)	(DEL 7.3)	
Actors	Use Case Owner	Test Engineers	Test Engineers, Use Case Owner	Test Engineers

Diabetic retinopathy

Alzheimer's disease

Innik

UNIL | Université de Lausanne

retina images 224×224

CNN

binary classif. (retinopathy yes/no)

clearbox

structured data 1×16

Gradient Boosting

binary classif. (AD and CN)

DE MONTFORT

Leukemia

HelmholtzZentrum münchen itsches Forschungsrentrum für Gesundheit und Umwelt

single-cell images 400×400

CNN

multi-class classif. (15 morph. categories)

Results - Diabetic retinopathy

- Individuals with 30+ years of diabetes were underrepresented (n=6), unfair FNR and FOR distributions were found for the age groups of 70, 60-69, 40-49 and unknown
- Model does not focus on relevant image elements such as arteries
- Low entropy score distribution for misclassifications under JPEG compression

Health

Center

Results - Alzheimer's disease

- FNR and FOR unfairness was indicated for 50-59 year old individuals, the age group of 50-59 years comprised only 7 individuals
- Age or gender features were never anchoring conditions, SHAP value for age in the group 50-59 years was pushing the prediction towards a positive prediction
- Low entropy score distribution for misclassifications under lognormal noise, challenge of meaningful perturbations

Results - Leukemia

- No bias assessment with aequitas possible as no metadata was available
- Model learned to focus on the leukocyte's nucleus and cytoplasm, while ignoring erythrocytes and other background structures
- JPEG compression increased output confidence of misclassifications, which may reflect the general calibration behaviour of the network type [Guo+17]

clearbox[△]

Health Center

Reporting

Full report cards can be accessed under identifier FGAI4H-J-049-A01 at

https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/SitePages/Home.aspx

Center

Discussion

What we need

- Keep assessment frameworks flexible to accommodate dependencies wrt data, model and task
- Maintain meta-information for datasets to enable bias, fairness and robustness analysis
- Domain-specific synthesis of meaningful robustness testing data

Next steps

- Towards in-silico testing of clinical endpoints
- Expanding audits to more use cases
- Automation of audit process through an assessment platform

LINE C DE MONTFORT TEC

Call for Collaboration

http://www.itu.int/go/fgai4h

(1) Have your use case audited

clearbox

- FG-AI4H already has 20+ use case groups
- (2) Become an auditor
 - Write papers with us analyzing vulnerabilities of ML4H models
 - Join one of the specialized research projects (e.g. development of automated assessment platform, measurement specific robustness benchmarks, OOD data and generalization)

Contact me © luis.oala@hhi.fraunhofer.de https://forms.gle/BwdGP98hvKSRYBxy8 luisoala.github.io

C DE MONTFORT

References I

ī.

Timnit Gebru et al. "Datasheets for Datasets". In: (2018), pp. 1–28. arXiv: 1803.09010. URL: http://arxiv.org/abs/1803.09010.

Chuan Guo et al. "On Calibration of Modern Neural Networks". In: Proceedings of the 34th International Conference on Machine Learning - Volume 70. ICML'17. Sydney, NSW, Australia: JMLR.org, 2017, pp. 1321-1330.

Jianxing He et al. "The practical implementation of artificial intelligence technologies in medicine". In: Nature medicine 25.1 (2019), pp. 30-36.

Fraunhofe

References II

IMDRF. Artificial Intelligence in Healthcare Opportunities and Challenges. 2019. URL: http://www.imdrf.org/docs/imdrf/final/ meetings/imdrf-meet-190916-russiayekaterinburg-14.pdf.

Xiaoxuan Liu et al. "CONSORT-Al extension". In: *Nature Medicine* 26.September (2020), pp. 1364–1374. DOI: 10.1038/s41591-020-1034-x.

Margaret Mitchell et al. "Model cards for model reporting". In: *FAT* 2019 - Proceedings of the 2019 Conference on Fairness, Accountability, and Transparency* Figure 2 (2019), pp. 220–229. DOI: 10.1145/3287560.3287596. arXiv: 1810.03993.

TEC Tecnológico de Costa Ric

References III

Mark P. Sendak et al. "Presenting machine learning model information to clinical end users with model facts labels". In: *npj Digital Medicine* 3.1 (2020). ISSN: 2398-6352. DOI: 10.1038/s41746-020-0253-3. URL: http://dx.doi.org/10.1038/s41746-020-0253-3.

Viknesh Sounderajah et al. "Developing specific reporting guidelines for diagnostic accuracy studies assessing AI interventions: The STARD-AI Steering Group". In: *Nature Medicine* 26.6 (2020), pp. 807–808. ISSN: 1546170X. DOI: 10.1038/s41591-020-0941-1. URL:

http://dx.doi.org/10.1038/s41591-020-0941-1.

References IV

US-FDA. Proposed regulatory framework for modifications to artificial intelligence/machine learning (AI/ML)-based software as a medical device (SAMD)—discussion paper and request for feedback. 2019 2019

Thomas Wiegand et al. "WHO and ITU establish benchmarking process for artificial intelligence in health". In: The Lancet 394.10192 (2019), pp. 9-11. ISSN: 1474547X, DOI: 10.1016/S0140-6736(19)30762-7.

